MEMS devices are machines so small they cannot be seen by the unaided human eye. With gears no bigger than a grain of pollen, they range in size from micrometers to a millimeter. MEMS combine electrical and mechanical components into an integrated micro device or systems that can function individually or in groups to sense, control and actuate larger devices.

As technical devices become smaller, basic processes like fluid flow become more difficult. University of Arkansas researcher Steve Tung is creating a novel solution to this problem by incorporating living bacteria into microelectromechanical systems (MEMS) to form living motors for pumps and valves. These tiny bioMEMS devices could be used in systems for drug delivery or DNA sequencing.