A fundamental discovery about the behavior of cooling glass could have a significant impact on the glass- and plastic-making industries, say researchers at Lehigh University.
Himanshu Jain, Diamond chair and professor of materials science and engineering at Lehigh, says the breakthrough was made possible by a combination of nanoscopic science and an old-fashioned kitchen recipe.
When molten glass is blown rapidly…
When molten glass is blown rapidly to make articles of desired shape, Jain’s group found, its outermost surface, measuring a few nanometers in thickness, sustains microscopic fractures when it comes into contact with air. One nanometer equals one one-billionth of a meter.
These fractures are microns or nanometers in width and thus too small to be seen with the unaided eye, says Jain. But when they are exposed to an aggressive solution, such as a dishwashing soap, the cracks etch out, spread and begin to dissolve faster than the rest of the glass, leaving behind a dirty look that can not be cleaned away.
In reality, says Jain, the dirty look is merely light that is scattered by the numerous microscopic cracks. Jain’s group described their findings in an article titled “Inhomogeneous evolution of a glass surface via free, rapid expansion” in the Oct. 6, 2003, issue of Applied Physics Letters.
Previously, says Jain, scientists and glass-makers had assumed that under force molten glass expanded in a uniform manner and that finished glass was a chemically durable, homogeneous material.
Jain has spent more than two decades studying the unorganized arrangements and unpredictable movements of atoms in glass’s non-crystalline structure.
More here.