Using novel electronic aids, vision can be represented on the skin, tongue or through the ears. If the sense of touch is gone from one part of the body, it can be routed to an area where touch sensations are intact.

Pilots confused by foggy conditions, in which the horizon disappears, can right their aircraft by monitoring sensations on the tongue or trunk. Surgeons can feel on their tongues the tip of a probe inside a patient’s body, enabling precise movements.



Sensory substitution is not new. Touch substitutes for vision when people read Braille. By tapping a cane, a blind person perceives a step, a curb or a puddle of water but is not aware of any sensation in the hand; feeling is experienced at the tip of the cane.



But the technology for swapping sensory information is largely the effort of Dr. Paul Bach-y-Rita, a neuroscientist in the University of Wisconsin Medical School’s orthopedics and rehabilitation department. More than 30 years ago, Dr. Bach-y-Rita developed the first sensory substitution device, routing visual images, via a head-mounted camera, to electrodes taped to the skin on people’s backs. The subjects, he found, could “see” large objects and flickering candles with their backs. The tongue, sensitive and easy to reach, turned out to be an even better place to deliver substitute senses, Dr. Bach-y-Rita said.



Until recently sensory substitution was confined to the laboratory. But electronic miniaturization and more powerful computer algorithms are making the technology less cumbersome. Next month, the first fully portable device will be tested in Dr. Bach-y-Rita’s lab.



More here.

0