Sudden cardiac death from emotional stress may be triggered by uneven signals from the brain to the heart.

UCL researchers have discovered that a system which normally coordinates signalling from the brain to different parts of the heart may be disrupted in some people, making them vulnerable to potentially fatal abnormal heart rhythms during mentally taxing tasks or emotional events such as family gatherings.



This is particularly true of people who already have heart disease, but it is the brain that may be most responsible. The new study suggests that uneven brain activity, in a region where nerves link directly to the heart, seems to result in an uneven distribution of signals across the heart, which stops the heart from contracting normally.



Around a third of the 300,000 sudden cardiac deaths which occur each year in the US arise from a blood clot in a major artery, which leads to a fatal heart attack. Mental stress is thought to be responsible for a further 20 per cent of these deaths, but scientists have been baffled by the exact mechanisms by which stress can bring on a fatal short-circuiting of the heart.



In the UCL study, volunteers with a history of heart disease were given stressful mental tasks while their brain activity was monitored using PET imaging. Electrical waves travelling across their heart were monitored using electrocardiogram analysis. The study showed that stress-induced changes in electrical currents in the heart were accompanied by uneven activity within the lower brain, in an area known as the brainstem.



The brainstem is connected on the left and right side to the heart by nerve pathways, known as autonomic nerves. These autonomic nerves control heart rate during physical or mental activity.



To maintain a regular heartbeat, the electrical currents that travel across the heart and initiate the heartbeat should be smooth and even. If these electrical waves travel slower or faster in parts of the heart, this can result in a short circuit which leads to arrhythmia – an irregular heartbeat.



More here.

0