If the fuel cell is to become the modern steam engine, basic research must provide breakthroughs in understanding, materials, and design to make a hydrogen−based energy system a vibrant and competitive force.


Since the industrial revolution began in the 18th century, fossil fuels in the form of coal, oil, and natural gas have powered the technology and transportation networks that drive society. But continuing to power the world from fossil fuels threatens our energy supply and puts enormous strains on the environment. The world’s demand for energy is projected to double by 2050 in response to population growth and the industrialization of developing countries.1 The supply of fossil fuels is limited, with restrictive shortages of oil and gas projected to occur within our lifetimes (see the article by Paul Weisz in Physics Today, July 2004, page 47). Global oil and gas reserves are concentrated in a few regions of the world, while demand is growing everywhere; as a result, a secure supply is increasingly difficult to assure. Moreover, the use of fossil fuels puts our own health at risk through the chemical and particulate pollution it creates. Carbon dioxide and other greenhouse gas emissions that are associated with global warming threaten the stability of Earth’s climate.



A replacement for fossil fuels will not appear overnight. Extensive R&D is required before alternative sources can supply energy in quantities and at costs competitive with fossil fuels, and making those alternative sources available commercially will itself require developing the proper economic infrastructure. Each of those steps takes time, but greater global investment in R&D will most likely hasten the pace of economic change. Although it is impossible to predict when the fossil fuel supply will fall short of demand or when global warming will become acute, the present trend of yearly increases in fossil fuel use shortens our window of opportunity for a managed transition to alternative energy sources.



Hydrogen as energy carrier
One promising alternative to fossil fuels is hydrogen2,3 (see the article by Joan Ogden, Physics Today, April 2002, page 69). Through its reaction with oxygen, hydrogen releases energy explosively in heat engines or quietly in fuel cells to produce water as its only byproduct. Hydrogen is abundant and generously distributed throughout the world without regard for national boundaries; using it to create a hydrogen economy—a future energy system based on hydrogen and electricity—only requires technology, not political access.



Although in many ways hydrogen is an attractive replacement for fossil fuels, it does not occur in nature as the fuel H2. Rather, it occurs in chemical compounds like water or hydrocarbons that must be chemically transformed to yield H2. Hydrogen, like electricity, is a carrier of energy, and like electricity, it must be produced from a natural resource. At present, most of the world’s hydrogen is produced from natural gas by a process called steam reforming. However, producing hydrogen from fossil fuels would rob the hydrogen economy of much of its raison d’être: Steam reforming does not reduce the use of fossil fuels but rather shifts them from end use to an earlier production step; and it still releases carbon to the environment in the form of CO2. Thus, to achieve the benefits of the hydrogen economy, we must ultimately produce hydrogen from non−fossil resources, such as water, using a renewable energy source.



Figure 1 depicts the hydrogen economy as a network composed of three functional steps: production, storage, and use. There are basic technical means to achieve each of these steps, but none of them can yet compete with fossil fuels in cost, performance, or reliability. Even when using the cheapest production method—steam reforming of methane—hydrogen is still four times the cost of gasoline for the equivalent amount of energy. And production from methane does not reduce fossil fuel use or CO2 emission. Hydrogen can be stored in pressurized gas containers or as a liquid in cryogenic containers, but not in densities that would allow for practical applications—driving a car up to 500 kilometers on a single tank, for example. Hydrogen can be converted to electricity in fuel cells, but the production cost of prototype fuel cells remains high: $3000 per kilowatt of power produced for prototype fuel cells (mass production could reduce this cost by a factor of 10 or more), compared with $30 per kilowatt for gasoline engines.


The gap between the present state of the art in hydrogen production, storage, and use and that needed for a competitive hydrogen economy is too wide to bridge in incremental advances. It will take fundamental breakthroughs of the kind that come only from basic research.

0