Researchers at the U.S. Department of Energy’s Argonne National Laboratory have combined the world’s hardest known material – diamond – with the world’s strongest structural form – carbon nanotubes.
This new process for “growing” diamond and carbon nanotubes together opens the way for its use in a number of energy-related applications.
The technique is the first successful synthesis of a diamond-nanotube nanocomposite, which means for the first time this specialized material has been produced at the nanometer size – one-millionth of a millimeter, or thousands of times smaller than the period at the end of this sentence.
The result established for the first time a process for making these materials a reality, setting the stage for several fundamental advances in the field of nanostructured carbon materials.
The resulting material has potential for use in low-friction, wear-resistant coatings, catalyst supports for fuel cells, high-voltage electronics, low-power, high-bandwidth radio frequency microelectromechanical/nanoelectromechanical systems (MEMS/NEMS), thermionic energy generation, low-energy consumption flat panel displays and hydrogen storage.
Diamond is called the hardest material because of its ability to resist pressure and permanent deformation, and its resistance to being scratched. Carbon nanotubes, which consist of sheets of graphitic carbon wrapped to form tubes with diameters only nanometers in size, are the strongest structures because they can withstand the highest tensile force per gram of any known material.
More here.