The well-publicized race in the desert earlier this month proved that artificially intelligent robots can drive autonomously over rugged terrain and long distances. But will the technology be relevant to average Americans?

If you ask the masterminds behind the robots, the answer is “yes, it’s just a matter of time.”

Vehicles powered with artificial-intelligence software and sporting the ability to “see” the road with external sensors will be a staple in the U.S. military within 10 years, under a mandate from Congress that spurred the desert robot rally. The underlying technology also will find its way into popular cars with features like collision and lane-departure warnings and adaptive cruise controls. The technology is also relevant, experts say, for the disabled and for automating machines.

“It’s not just about a bright idea. There’s a lot of work to do. That business of development and productization and building an enterprise is a lot harder than creating a technology,” said William “Red” Whittaker, a professor of robotics at Carnegie Mellon University. So much robotics research has been done at Carnegie Mellon that CMU’s hometown of Pittsburgh is jokingly called “Roboburgh” in some science circles.

For Stanford University, the winner of the DARPA Grand Challenge robot desert race and its $2 million prize, the goal has long been to make vehicles safer for the road.

Stanford set out with the particular interest of developing technology that would help carmakers include aids that could cut down on the number of traffic deaths caused by inattention or intoxication. Now Stanford has $2 million to invest in improving its technology and artificial intelligence research, under the direction of robotics professor Sebastian Thrun. Volkswagen, which sponsored Stanford’s vehicle, Stanley, and donated a Touareg V5 for the race, is also developing this technology for its line of cars.

The next frontier will be to develop technologies that can help vehicles improve city driving, as opposed to motoring off-road or on highways, where there are no stoplights or pedestrians. The race gave the robots a structure for driving the course. But on the highway or in cities, intelligent vehicles won’t have that direction.

More here.