//www.krisweb.com/krissheepscot/krisdb/html/krisweb/stream/algae.jpg

Scientists from two-dozen research organizations led by the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) and the Monterey Bay Aquarium Research Institute (MBARI) have decoded genomes of two algal strains, highlighting the genes enabling them to capture carbon and maintain its delicate balance in the oceans.

These findings, from a team led by Alexandra Z. Worden of MBARI and published in the April 10 edition of the journal Science, will illuminate cellular processes related to algae-derived biofuels being pursued by DOE scientists.

The study sampled two geographically diverse isolates of the photosynthetic algal genus Micromonas—one from the South Pacific, the other from the English Channel. The analysis identified approximately 10,000 genes in each, compressed into genomes totaling about 22 million nucleotides. “Yet, surprisingly, they are far more diverse than we originally thought,” said Worden. “These two picoeukaryotes, often considered to be the same species, only share about 90 percent of their genes.”

To put this in perspective, humans and some primates have about 98 percent genes in common. Worden said that the algae’s divergent gene complement may cause them to access and respond to the environment differently. “This also means that as the environment changes, these different populations will be subject to different effects, and we don’t know whether they will respond in a similar fashion.” She said that their apparently broad physiological range (exemplified by their expansive geographical range) may result in increased resilience as compared to closely related species, enabling them to survive environmental change better than organisms with a narrower geographic range. Testing the hypotheses developed through cataloging their respective inventory of genes, Worden said, will go a long way towards understanding their biology and ecology.

more via sciencenews

 

0