091129153401-large

This image shows the northern and southern hemispheres of Titan, showing the disparity between the abundance of lakes in the north and their paucity in the South.

Researchers at the California Institute of Technology (Caltech) suggest that the eccentricity of Saturn’s orbit around the sun may be responsible for the unusually uneven distribution of methane and ethane lakes over the northern and southern polar regions of the planet’s largest moon, Titan. On Earth, similar “astronomical forcing” of climate drives ice-age cycles.

A paper describing the theory appears in the November 29th advance online edition of Nature Geoscience.

As revealed by Synthetic Aperture Radar (SAR) imaging data taken by NASA’s Cassini spacecraft, which has been surveying Saturn and its moons since 2004, liquid hydrocarbon-filled lakes in Titan’s northern high latitudes cover 20 times more area than lakes in the southern high latitudes. There are also significantly more partially filled and now-empty lakes in the north. (In the SAR data, smooth features — like the surfaces of lakes — appear as dark areas, while rougher features — such as the bottom of an empty lake — appear bright.)

Assuming that the asymmetry is not a statistical fluke (which is unlikely because of the large amount of data collected by Cassini), scientists initially considered the idea that “there is something inherently different about the northern polar region versus the south in terms of topography, such that liquid rains, drains, or infiltrates the ground more in one hemisphere,” says Oded Aharonson, associate professor of planetary science at Caltech and lead author of the Nature Geoscience paper. However, he notes, there are no substantial known differences between the north and south to support this possibility.

Alternatively, the mechanism may be seasonal. One year on Titan lasts 29.5 Earth years. Every 15 Earth years the seasons reverse, so that it becomes summer in one hemisphere and winter in the other. (Currently, summer has just begun in the northern hemisphere, and winter in the south.) According to the seasonal hypothesis, methane rainfall and evaporation vary in different seasons — recently filling lakes in the north while drying lakes in the south.

The problem with this idea, Aharonson says, is that it explains decreases of about one meter per year in the depths of lakes in the summer hemisphere. But Titan’s lakes are a few hundred meters deep on average, and wouldn’t drain (or fill) in just 15 years.

In addition, seasonal variation can’t account for the disparity between the hemispheres in the number of empty lakes; the northern pole has roughly three times as many dried-up lake basins as the south (and seven times as many partially filled ones).

“How do you move the hole in the ground?” Aharonson asks. “The seasonal mechanism may be responsible for part of the global transport of liquid methane, but it’s not the whole story.”

A more plausible explanation, say Aharonson and his colleagues, is related to the eccentricity of the orbit of Saturn — and hence of Titan, its satellite — around the sun.

more via science news

0