Magnified image showing adult stem cells in the process of turning into bone cells after treatment with high-frequency sound waves. Green colouring shows the presence of collagen, which the cells produce as they become bone cells. Magnification: 60X.
Researchers have used sound waves to turn stem cells into bone cells, in a tissue engineering advance that could one day help patients regrow bone lost to cancer or degenerative disease.
The innovative stem cell treatment from researchers at RMIT University offers a smart way forward for overcoming some of the field’s biggest challenges, through the precision power of high-frequency soundwaves.
Tissue engineering is an emerging field that aims to rebuild bone and muscle by harnessing the human body’s natural ability to heal itself.
A key challenge in regrowing bone is the need for large amounts of bone cells that will thrive and flourish once implanted in the target area.
To date, experimental processes to change adult stem cells into bone cells have used complicated and expensive equipment and have struggled with mass production, making widespread clinical application unrealistic.
Additionally, the few clinical trials attempting to regrow bone have largely used stem cells extracted from a patient’s bone marrow—a highly painful procedure.
In a new study published in the journal Small, the RMIT research team showed stem cells treated with high-frequency sound waves turned into bone cells quickly and efficiently.
Continue reading… “How sound waves could help regrow bones”