Energy-generating synthetic skin for affordable prosthetic limbs and touch-sensitive robots


by University of Glasgow

Energy-generating-synthetic-skin

A new type of energy-generating synthetic skin could create more affordable prosthetic limbs and robots capable of mimicking the sense of touch, scientists say.

In an early-view paper published in the journal IEEE Transactions on Robotics, researchers from the University of Glasgow describe how a robotic hand wrapped in their flexible solar skinis capable of interacting with objects without using dedicated and expensive touch sensors.

Instead, the skin puts the array of miniaturized solar cells integrated on its soft polymer surface to a clever dual use. The cells generate enough energy to power the micro-actuators which control the hand’s movements, but they also provide the hand with its unique sense of ‘touch’ by measuring the variations in the solar cells’ output.

Continue reading… “Energy-generating synthetic skin for affordable prosthetic limbs and touch-sensitive robots”
0

Scientists reverse age-related vision loss, eye damage from glaucoma in mice

by Ryan Jaslow , Harvard Medical School

scientists-reverse-age-related-vision-loss-glaucoma
Harvard Medical School scientists have successfully restored vision in mice by turning back the clock on aged eye cells in the retina to recapture youthful gene function.

The team’s work, described Dec. 2 in Nature, represents the first demonstration that it may be possible to safely reprogram complex tissues, such as the nerve cells of the eye, to an earlier age.

In addition to resetting the cells’ aging clock, the researchers successfully reversed vision loss in animals with a condition mimicking human glaucoma, a leading cause of blindness around the world.

The achievement represents the first successful attempt to reverse glaucoma-induced vision loss, rather than merely stem its progression, the team said. If replicated through further studies, the approach could pave the way for therapies to promote tissue repair across various organs and reverse aging and age-related diseases in humans.

“Our study demonstrates that it’s possible to safely reverse the age of complex tissues such as the retina and restore its youthful biological function,” said senior author David Sinclair, professor of genetics in the Blavatnik Institute at Harvard Medical School, co-director of the Paul F. Glenn Center for Biology of Aging Research at HMS and an expert on aging.

Continue reading… “Scientists reverse age-related vision loss, eye damage from glaucoma in mice”
0

Human aging process biologically reversed in world first

C8E14048-47A7-4A4D-9905-3D849245A493

The ageing process has been biologically reversed for the first time by giving humans oxygen therapy in a pressurised chamber.

 Scientists in Israel showed they could turn back the clock in two key areas of the body believed to be responsible for the frailty and ill-health that comes with growing older.

As people age, the protective caps at the ends of chromosomes – called telomeres – shorten, causing DNA to become damaged and cells to stop replicating. At the same time, “zombie” senescent cells build up in the body, preventing regeneration.

Increasing telemere length and getting rid of senescent cells is the focus of many anti-ageing studies, and drugs are being developed to target those areas.

Now scientists at Tel Aviv University have shown that giving pure oxygen to older people while in a hyperbaric chamber increased the length of their telomeres by 20 per cent, a feat that has never been achieved before.

Continue reading… “Human aging process biologically reversed in world first”

0

Scientists 3D Bioprint a hybrid tissue construct for cartilage regeneration

89ED079E-3298-4412-86C5-205F03D75228

Wake Forest Institute for Regenerative Medicine scientists (WFIRM) have developed a method to bioprint a type of cartilage that could someday help restore knee function damaged by arthritis or injury.

This cartilage, known as fibrocartilage, helps connect tendons or ligaments or bones and is primarily found in the meniscus in the knee. The meniscus is the tough, rubbery cartilage that acts as a shock absorber in the knee joint. Degeneration of the meniscus tissue affects millions of patients and arthroscopic partial meniscectomy is one of the most common orthopedic operations performed. Besides surgery, there is a lack of available treatment options.

In this latest proof-of-concept strategy, the scientists have been able to 3D bioprint a hybrid tissue construct for cartilage regeneration by printing two specialized bioinks – hydrogels that contain the cells – together to create a new formulation that provides a cell-friendly microenvironment and structural integrity. This work is done with the Integrated Tissue and Organ Printing System, a 3D bioprinter that was developed by WFIRM researchers over a 14-year period. The system deposits both biodegradable, plastic-like materials to form the tissue “shape” and bioinks that contain the cells to build new tissues and organs.

Continue reading… “Scientists 3D Bioprint a hybrid tissue construct for cartilage regeneration”

0

Nanobiologic approach trains the innate immune system to eliminate tumor cells

6BDF30EF-C82A-4A4B-9E9D-A08616BE6C68

A groundbreaking new type of cancer immunotherapy developed at the Icahn School of Medicine at Mount Sinai trains the innate immune system to help it eliminate tumor cells through the use of nanobiologics, tiny materials bioengineered from natural molecules that are paired with a therapeutic component, according to a study published in Cell in October.

This nanobiologic immunotherapy targets the bone marrow, where part of the immune system is formed, and activates a process called trained immunity. This process reprograms bone marrow progenitor cells to produce “trained” innate immune cells that halt the growth of cancer, which is normally able to protect itself from the immune system with the help of other types of cells, called immunosuppressive cells.

This work for the first time demonstrates that trained immunity can be successfully and safely induced for the treatment of cancer. The research was performed in animal models, including a mouse model with melanoma, and the researchers said it is being developed for clinical testing.

Continue reading… “Nanobiologic approach trains the innate immune system to eliminate tumor cells”

0

Scientists create artificial, ‘living aneurysm’ outside the human brain in extraordinary first

47FB63CB-E371-497F-95F0-D15EFA3CB581

 For the first time, researchers have 3D printed a ‘living’ model of an aneurysm outside the body, using human brain cells. The breakthrough could one day assist brain surgeons in both training and high-risk decision-making.

An aneurysm occurs when a bulge or bubble develops at a weak point in a given blood vessel, which can take place in the heart or brain. The weakened wall can eventually rupture, with catastrophic and life-threatening consequences for the patient.

Given the highly sensitive and delicate areas in which aneurysms take place, they are often extremely difficult to both find and treat.

As a potential solution, researchers at the Lawrence Livermore National Laboratory (LLNL), including scientists from Duke University and Texas A&M, have created an external, artificial replica which mimics the particular environment in which aneurysms occur.

Continue reading… “Scientists create artificial, ‘living aneurysm’ outside the human brain in extraordinary first”

0

Rapid disease pathogen identification a step closer following successful GeneCapture demonstration

FE331E34-70B3-4C72-A79B-9A7B4B0BA7DF

GeneCapture’s unique disposable cartridge design enables rapid multi-pathogen identification directly from samples.

 Soon it could only take an hour to find out what pathogen is making you ill, following the successful demonstration of the world’s first multi-pathogen identification using non-amplified RNA detection by GeneCapture, a company cofounded by researchers at The University of Alabama in Huntsville (UAH), a part of the University of Alabama System.

GeneCapture has licensed a molecular binding technology from UAH and the company’s CAPTURE PLATFORM is on track for commercialization within two years. The GeneCapture team has briefed the Food and Drug Administration (FDA) on its approach and has begun to prepare for the clinical testing required for FDA clearance. It is in discussions with industry leaders for various applications in health care rapid infection detection.

“We made history today—this is the first time an automated rapid pathogen identification has been reported directly from the RNA of the sample, with no modification or amplification of its genetic source, in about an hour,” says GeneCapture CEO and local entrepreneur Peggy Sammon. “We envision a future where finding out why you are sick can be solved almost anywhere, in an hour, and without being chained to a lab.”

Continue reading… “Rapid disease pathogen identification a step closer following successful GeneCapture demonstration”

0

CRISPR therapy restores retinal and visual function in mice

68E88ED7-E447-4F66-8CFB-63EF6F8F337D

A breakthrough study, led by researchers from the University of California, Irvine, results in the restoration of retinal and visual functions of mice models suffering from inherited retinal disease.

Published today in Nature Biomedical Engineering, the paper, titled, “Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing,” illustrates the use of a new generation CRISPR technology and lays the foundation for the development of a new therapeutic modality for a wide range of inherited ocular diseases caused by different gene mutations.

Continue reading… “CRISPR therapy restores retinal and visual function in mice”

0

Coronavirus: test that can detect pathogen in 5 minutes developed by Nobel Prize winner Jennifer Doudna

FA62D079-0E72-437F-AF0B-2A9B70109F45

The research team was led by University of California, Berkeley’s Dr Jennifer
Doudna, a joint winner of the 2020 Nobel Prize for chemistry. Photo: Reuters

California-based researchers develop a test that can detect the coronavirus using gene-editing technology and a modified mobile phone camera.

Mobile phones were used for ‘their robustness and cost-effectiveness, and the fact that they are widely available’, say the researchers.

A team of California-based researchers have developed a test that can detect the coronavirus in five minutes using gene-editing technology and a modified mobile phone camera, a discovery that could solve the issue of under-testing in epidemic-stricken countries.

Continue reading… “Coronavirus: test that can detect pathogen in 5 minutes developed by Nobel Prize winner Jennifer Doudna”

0

Researchers create hand-held device for patients to read levels of cancer biomarker in their own blood

1E80FEC0-8B4D-47DE-B912-021158B71430

Newswise: Researchers create hand-held device for patients to read levels of cancer biomarker in their own blood

Newswise — HAMILTON, ON, Oct. 8, 2020 — Researchers at McMaster and Brock universities have created the prototype for a hand-held device to measure a biomarker for cancer, paving the way for home-based cancer monitoring and to improve access to diagnostic testing.

The device works much like the monitors that diabetics use to test their blood-sugar levels and could be used in a medical clinic or at home, all without lab work, greatly simplifying the process for testing blood for cancer’s signature.

A user would mix a droplet of blood in a vial of reactive liquid, then place the mixture onto a strip and insert it into a reader. In minutes, the device would measure an antigen that indicates the degree to which cancer is present.

The prototype has been designed to monitor prostate specific antigen (PSA) and the technology can readily be adapted to measure other markers, depending on the form of cancer or other chronic disease.

Continue reading… “Researchers create hand-held device for patients to read levels of cancer biomarker in their own blood”

0

Scientists claim to invent hydrogel that heals nerve damage

B1D39E93-FF59-4E3B-B8BE-F9803A382F3A

THEY SAY THE GEL CAN PROPAGATE NEURAL SIGNALS WHERE NERVES ARE INJURED.

A team of doctors and engineers have developed a new hydrogel that they say might be able to repair nerve damage more quickly and reliably than any other methods.

The hydrogel is essentially a porous and water-saturated material that can stretch, bend, and — most importantly — propagate neural signals. In animal trials, the team of Nanjing University researchers found that the hydrogel restored lost bodily function and helped the animals heal faster, according to research published Wednesday in the journal ACS NANO. Now, they’re hoping the gel will work in human medicine as well.

Continue reading… “Scientists claim to invent hydrogel that heals nerve damage”

0

Biochip innovation combines AI and nanoparticles to analyze tumors

C51E21CB-60ED-4F33-9C90-ED2D38264F65

Electrical engineers, computer scientists and biomedical engineers at the University of California, Irvine have created a new lab-on-a-chip that can help study tumor heterogeneity to reduce resistance to cancer therapies.

In a paper published today in Advanced Biosystems, the researchers describe how they combined artificial intelligence, microfluidics and nanoparticle inkjet printing in a device that enables the examination and differentiation of cancers and healthy tissues at the single-cell level.

“Cancer cell and tumor heterogeneity can lead to increased therapeutic resistance and inconsistent outcomes for different patients,” said lead author Kushal Joshi, a former UCI graduate student in biomedical engineering. The team’s novel biochip addresses this problem by allowing precise characterization of a variety of cancer cells from a sample.

Continue reading… “Biochip innovation combines AI and nanoparticles to analyze tumors”

0