Scientists 3D Bioprint a hybrid tissue construct for cartilage regeneration

89ED079E-3298-4412-86C5-205F03D75228

Wake Forest Institute for Regenerative Medicine scientists (WFIRM) have developed a method to bioprint a type of cartilage that could someday help restore knee function damaged by arthritis or injury.

This cartilage, known as fibrocartilage, helps connect tendons or ligaments or bones and is primarily found in the meniscus in the knee. The meniscus is the tough, rubbery cartilage that acts as a shock absorber in the knee joint. Degeneration of the meniscus tissue affects millions of patients and arthroscopic partial meniscectomy is one of the most common orthopedic operations performed. Besides surgery, there is a lack of available treatment options.

In this latest proof-of-concept strategy, the scientists have been able to 3D bioprint a hybrid tissue construct for cartilage regeneration by printing two specialized bioinks – hydrogels that contain the cells – together to create a new formulation that provides a cell-friendly microenvironment and structural integrity. This work is done with the Integrated Tissue and Organ Printing System, a 3D bioprinter that was developed by WFIRM researchers over a 14-year period. The system deposits both biodegradable, plastic-like materials to form the tissue “shape” and bioinks that contain the cells to build new tissues and organs.

Continue reading… “Scientists 3D Bioprint a hybrid tissue construct for cartilage regeneration”

3-D bioprinting constructs for cartilage regeneration

8E4125B4-0019-4757-8555-7FA93871B94E

Schematic presentation of the study design and scaffold construction. (A) Schematic Illustration of the study design with 3D bioprinted dual-factor releasing and gradient-structured MSC-laden constructs for articular cartilage regeneration in rabbits. Schematic diagram of construction of the anisotropic cartilage scaffold and study design. (B) A computer-aided design (CAD) model was used to design the four-layer gradient PCL scaffolding structure to offer BMS for anisotropic chondrogenic differentiation and nutrient supply in deep layers (left). Gradient anisotropic cartilage scaffold was constructed by one-step 3D bioprinting gradient polymeric scaffolding structure and dual protein-releasing composite hydrogels with bioinks encapsulating BMSCs with BMP4 or TGFβ3 μS as BCS for chondrogenesis (middle). The anisotropic cartilage construct provides structural support and sustained release of BMSCs and differentiative proteins for biomimetic regeneration of the anisotropic articular cartilage when transplanted in the animal model (right). Different components in the diagram are depicted at the bottom. HA, hyaluronic acid.

 

Cartilage injury is a common cause of joint dysfunction and existing joint prostheses cannot remodel with host joint tissue. However, it is challenging to develop large-scale biomimetic anisotropic constructs that structurally mimic native cartilage. In a new report on Science Advances, Ye Sun and a team of scientists in orthopedics, translational research and polymer science in China, detailed anisotropic cartilage regeneration using three-dimensional (3-D) bioprinting dual-factor releasing gradient-structured constructs. The team used the dual-growth-factor releasing mesenchymal stem cell (MSC)-laden hydrogels for chondrogenic differentiation (cartilage development). The 3-D bioprinted cartilage constructs showed whole-layer integrity, lubrication of superficial layers and nutrient supply into deeper layers. The scientists tested the cartilage tissue in the lab and in animal models to show tissue maturation and organization for translation to humans after sufficient experimental studies. The one-step, 3-D printed dual-factor releasing gradient-structured cartilage constructs can assist regeneration of MSC- and 3-D bioprinted therapy for injured or degenerative joints.

Continue reading… “3-D bioprinting constructs for cartilage regeneration”

KFC is working with a Russian 3D bioprinting firm to try to make lab-produced chicken nuggets

4393582C-FD7F-4610-AF42-EEE652549FFD

The restaurant chain says it’s the meat of the future

KFC is trying to create the world’s first laboratory-produced chicken nuggets, part of its “restaurant of the future” concept, the company announced. The chicken restaurant chain will work with Russian company 3D Bioprinting Solutions to develop bioprinting technology that will “print” chicken meat, using chicken cells and plant material.

KFC plans to provide the bioprinting firm with ingredients like breading and spices “to achieve the signature KFC taste” and will seek to replicate the taste and texture of genuine chicken.

It’s worth noting that the bioprinting process KFC describes uses animal material, so any nuggets it produced wouldn’t be vegetarian. KFC does offer a vegetarian option at some of its restaurants; last year it became the first US fast-food chain to test out Beyond Meat’s plant-based chicken product, which it plans to roll out to more of its locations this summer.

Continue reading… “KFC is working with a Russian 3D bioprinting firm to try to make lab-produced chicken nuggets”

Discover the Hidden Patterns of Tomorrow with Futurist Thomas Frey
Unlock Your Potential, Ignite Your Success.

By delving into the futuring techniques of Futurist Thomas Frey, you’ll embark on an enlightening journey.

Learn More about this exciting program.