Respiration is a fundamental process of all living things, allowing them to produce energy, stay healthy, and survive. In cells, respiration involves what are known as “respiratory proteins,” e.g. hemoglobin in the blood and myoglobin in muscles.
Respiratory proteins work by binding and releasing small molecules like oxygen, carbon monoxide etc., called ligands. They do this through their “active center,” which in many respiratory proteins is a chemical structure called heme porphyrin.
A supercomputer-powered genetic study of COVID-19 patients has spawned a possible breakthrough into how the novel coronavirus causes disease—and points toward new potential therapies to treat its worst symptoms.
The genetic data mining research uncovered a common pattern of gene activity in the lungs of symptomatic COVID-19 patients, which when compared to gene activity in healthy control populations revealed a mechanism that appears to be a key weapon in the coronavirus’s arsenal.
The good news is there are already drugs—a few of which are already FDA-approved—aimed at some of these very same pathologies.
“We think we have a core mechanism that explains a lot of the symptoms where the virus ends up residing,” said Daniel Jacobson, chief scientist for computational systems biology at Oak Ridge National Labs in Oak Ridge, Tenn.
Old human cells return to a more youthful and vigorous state after being induced to briefly express a panel of proteins involved in embryonic development, according to a new study by researchers at the Stanford University School of Medicine.
The researchers also found that elderly mice regained youthful strength after their existing muscle stem cells were subjected to the rejuvenating protein treatment and transplanted back into their bodies.
The proteins, known as Yamanaka factors, are commonly used to transform an adult cell into what are known as induced pluripotent stem cells, or iPS cells. Induced pluripotent stem cells can become nearly any type of cell in the body, regardless of the cell from which they originated. They’ve become important in regenerative medicine and drug discovery.
The study found that inducing old human cells in a lab dish to briefly express these proteins rewinds many of the molecular hallmarks of aging and renders the treated cells nearly indistinguishable from their younger counterparts.
Research into Alzheimer’s-related memory loss has uncovered an exciting new breakthrough in the form of a world-first gene therapy
Scientists in Australia have made an exciting breakthrough in Alzheimer’s research, demonstrating what they describe as the first gene-therapy-based approach for treating advanced forms of the disease. Through experiments in mice, the team was able to show how activating a key enzyme in the brain can prevent the kind of memory loss associated with advanced forms of Alzheimer’s, and even reverse it.
The research was carried out at Macquarie University, where dementia researchers and brothers Lars and Arne Ittner were investigating the role of a key enzyme in the brain called p38gamma. Through previous research, the brothers had shown that by activating this enzyme in mice with advanced dementia, they could modify a protein that prevents the development of Alzheimer’s symptoms.
Houston medical team credits 96% Covid cure rate to novel “MATH+” protocol: IV steroids, blood thinner, IV vitamins, maybe some Pepcid.
The most widely accepted (and plausible) explanation for the apparent disconnect between coronavirus cases and coronavirus deaths over past weeks, in Texas, Arizona, Florida, California, is a temporal lag; that is, deaths typically show up a month or so after hospital admission is required. A few weeks from now the numbers will catch up with each other, the experts say.
An MIT team has created surgical tape that can hold strong but also be removed when needed
As helpful as Band-Aids are, ripping them off your skin is never fun – but just imagine having one on your heart or lung. Researchers at MIT have now managed to create surgical tape that can stick to wet surfaces like organs, and more importantly, be removed safely when it’s no longer needed.
Last year, the team developed an impressive new alternative to sutures. Their double-sided tape could be used to patch up incisions or wounds in organs, working within a matter of seconds. It could also be used to attach implantable medical devices to tissues.
Older mice grew significantly more new muscle fibers, shown as pink “donut” shapes, after undergoing a procedure that effectively diluted the proteins in their blood plasma (bottom) than they did before they underwent the procedure
In 2005, University of California, Berkeley, researchers made the surprising discovery that making conjoined twins out of young and old mice — such that they share blood and organs — can rejuvenate tissues and reverse the signs of aging in the old mice. The finding sparked a flurry of research into whether a youngster’s blood might contain special proteins or molecules that could serve as a “fountain of youth” for mice and humans alike.
But a new study by the same team shows that similar age-reversing effects can be achieved by simply diluting the blood plasma of old mice — no young blood needed.
In the study, the team found that replacing half of the blood plasma of old mice with a mixture of saline and albumin — where the albumin simply replaces protein that was lost when the original blood plasma was removed — has the same or stronger rejuvenation effects on the brain, liver and muscle than pairing with young mice or young blood exchange. Performing the same procedure on young mice had no detrimental effects on their health.
Data from one of the first clinical uses of augmented reality guidance with electromagnetically tracked tools shows that the technology may help doctors quickly, safely, and accurately deliver targeted liver cancer treatments, according to a research abstract presented during a virtual session of the Society of Interventional Radiology’s 2020 Annual Scientific Meeting on June 14. The technology provides a three-dimensional holographic view inside a patient’s body, allowing interventional radiologists to accurately burn away tumors while navigating to avoid organs and other critical structures.
“Converting traditional two-dimensional imaging into three-dimensional holograms which we can then utilize for guidance using augmented reality helps us to better view a patient’s internal structures as we navigate our way to the point of treatment,” said Gaurav Gadodia, MD, lead author of the study and radiology resident at Cleveland Clinic. “While conventional imaging like ultrasound and CT is safe, effective, and remains the gold-standard of care, augmented reality potentially improves the visualization of the tumor and surrounding structures, increasing the speed of localization and improving the treating-physician’s confidence.”
Nuro is partnering with CVS Pharmacy to deliver medicines using its autonomous vehicle.
Starting this month, the “first-of-its-kind partnership” brings Nuro into the health space as the startup utilizes its fleet of autonomous vehicles to deliver prescriptions and essentials across three zip codes in Houston, Texas.
Pharma is the third industry sector in which Nuro will introduce its autonomous vehicles.
Miniature human livers can be grown from stem cells and implanted into rats – and hopefully, one day humans
Imagine needing a liver transplant, and instead of waiting for a donor, a new one could be grown from your own skin cells. Scientists have now taken quite a big step towards that future, by successfully transplanting miniature human livers grown from induced pluripotent stem cells (IPSCs) into rats.
Organ transplants save lives, but there are hurdles to overcome. For one, there’s a constant shortage of donors and, even when one is found, the patient’s immune system often rejects the new tissue.
Growing a replacement organ from a patient’s own cells could solve both problems. It can be done on demand when a patient needs one, and the organ won’t be rejected because the immune system recognizes the cells as “self.”
The classic eye exam may be about to get an upgrade. Researchers have developed an online vision test—fueled by artificial intelligence (AI)—that produces much more accurate diagnoses than the sheet of capital letters we’ve been staring at since the 19th century. If perfected, the test could also help patients with eye diseases track their vision at home.
“It’s an intriguing idea” that reveals just how antiquated the classic eye test is, says Laura Green, an ophthalmologist at the Krieger Eye Institute. Green was not involved with the work, but she studies ways to use technology to improve access to health care.
The classic eye exam, known as the Snellen chart, has been around since 1862. The farther down the sheet a person can read, the better their vision. The test is quick and easy to administer, but it has problems, says Chris Piech, a computer scientist at Stanford University. Patients start to guess at letters when they become blurry, he says, which means they can get different scores each time they take the test.
MIT chemists have developed a protocol to rapidly produce protein chains up to 164 amino acids long. The flow-based technology could speed up drug development and allow scientists to design novel protein variants incorporating amino acids that don’t occur naturally in cells. The automatic tabletop machine, pictured here, is nicknamed the “Amidator” by the research team. Credit: MIT
Many proteins are useful as drugs for disorders such as diabetes, cancer, and arthritis. Synthesizing artificial versions of these proteins is a time-consuming process that requires genetically engineering microbes or other cells to produce the desired protein.
MIT chemists have devised a protocol to dramatically reduce the amount of time required to generate synthetic proteins. Their tabletop automated flow synthesis machine can string together hundreds of amino acids, the building blocks of proteins, within hours. The researchers believe their new technology could speed up the manufacturing of on-demand therapies and the development of new drugs, and allow scientists to design artificial proteins by incorporating amino acids that don’t exist in cells.