Scientists forge ahead with electron microscopy to build quantum materials atom by atom

IMG_9433

With a STEM microscope, ORNL’s Ondrej Dyck brought two, three and four silicon atoms together to build clusters and make them rotate within a layer of graphene, a two-dimensional layer of carbon atoms that exhibits unprecedented strength and high electrical conductivity. Credit: Ondrej Dyck/Oak Ridge National Laboratory, U.S. Dept. of Energy

A novel technique that nudges single atoms to switch places within an atomically thin material could bring scientists another step closer to realizing theoretical physicist Richard Feynman’s vision of building tiny machines from the atom up.

A significant push to develop materials that harness the quantum nature of atoms is driving the need for methods to build atomically precise electronics and sensors. Fabricating nanoscale devices atom by atom requires delicacy and precision, which has been demonstrated by a microscopy team at the Department of Energy’s Oak Ridge National Laboratory.

Continue reading… “Scientists forge ahead with electron microscopy to build quantum materials atom by atom”