The key, explained UC Irvine doctoral candidate and study leader Mya Le Thai, is in the coating. The researchers found that when shielded by an inner layer of a manganese dioxide and thin outer shell of “Plexiglas-like” electrolyte gel, a filament exhibited none of the breakdown that typical, non-coated filaments experience during power cycling. Usually, nanowires exposed to electrical currents expand, grow brittle, and eventually crack, but the coated electrode “[held] its shape much better,” said Thai. One potential reason? The gel’s malleability gives the battery’s metal oxide enough flexibility to prevent cracking.Thai believes the coated nanowire represents “a more reliable option” than traditional filaments. Furthermore, she believes it has mass-market potential. “This research proves that a nanowire-based battery electrode can have a long lifetime and that we can make these kinds of batteries a reality.”
The nanowire’s relegated to the lab, for now, and its commercial feasibility is unclear. But if further tests and research pan out, the next generation of lithium-ion batteries could end up lasting a lot longer than the devices they’ll power.
Article via: digitaltrends.com
Photo via: newlaunches.com