Powerful new AI framework turbocharges automated learning process

BD0F3B5A-F46C-4050-8638-40569B3C6B04Framework improves ‘continual learning’ for artificial intelligence

Researchers have developed a new framework for deep neural networks that allows artificial intelligence (AI) systems to better learn new tasks while “forgetting” less of what it has learned regarding previous tasks. The researchers have also demonstrated that using the framework to learn a new task can make the AI better at performing previous tasks, a phenomenon called backward transfer.

“People are capable of continual learning; we learn new tasks all the time, without forgetting what we already know,” says Tianfu Wu, an assistant professor of electrical and computer engineering at NC State and co-author of a paper on the work. “To date, AI systems using deep neural networks have not been very good at this.”

“Deep neural network AI systems are designed for learning narrow tasks,” says Xilai Li, a co-lead author of the paper and a Ph.D. candidate at NC State. “As a result, one of several things can happen when learning new tasks. Systems can forget old tasks when learning new ones, which is called catastrophic forgetting. Systems can forget some of the things they knew about old tasks, while not learning to do new ones as well. Or systems can fix old tasks in place while adding new tasks – which limits improvement and quickly leads to an AI system that is too large to operate efficiently. Continual learning, also called lifelong-learning or learning-to-learn, is trying to address the issue.”

Continue reading… “Powerful new AI framework turbocharges automated learning process”

0