US Air Force F-22s and F-35s will soon launch and control recoverable attack drones from the cockpit of the plane.
Key point: This technology, which hinges upon higher levels of autonomous navigation, brings a wide swath of improved mission possibilities.
US Air Force F-22s and F-35s will soon launch and control recoverable attack drones from the cockpit of the plane to expand air-combat operations, test enemy air defenses, conduct long-range ISR and even deliver weapons.
This fast-approaching technology, which calls upon advanced levels of autonomous navigation, is closer to reality due of DARPA’s Gremlins program which plans to break new ground by launching – and recovering – four drones from an in-flight C-130 next year.
Air recoverable drones, slated to become operational over just the next few years, will bring a new phase of mission options enabling longer ranges, improved sensor payloads, advanced weapons and active command and control from the air.
“The team looked at how fifth generation aircraft systems like the F-35 and F-22 respond to threats, and how they could incorporate Gremlins in higher risk areas,” a DARPA statement said.
For years, it has been possible to launch expendable drones from the air, without needing a ground control station, provided they do not return to an aircraft. Gremlins, by contrast, is a technical effort to engineer specially configured aerial drones able to both launch and return to a host aircraft.
The program is now moving into a phase three, according to DARPA statements, which cite a new demonstration and development deal with Dynetics to execute the upcoming launch and recovery C-130 flight.
“DARPA is progressing toward its plan to demonstrate airborne launch and recovery of multiple unmanned aerial systems, targeted for late 2019. Now in its third and final phase, the goal for the Gremlins program is to develop a full-scale technology demonstration featuring the air recovery of multiple low-cost, reusable UASs, or “Gremlins,” a DARPA announcement said earlier this year.
This technology, which hinges upon higher levels of autonomous navigation, brings a wide swath of improved mission possibilities. These include much longer attack and mission reach, because drones can begin missions while in the air much closer to an objective, without having to travel longer distances from a ground location or forward operating base. Furthermore, perhaps of even greater significance, air-launched returnable drones can be equipped with more advanced sensor payloads able to conduct ISR or even attack missions.
A flight test at Yuma Proving Ground earlier this year provided an opportunity to conduct safe separation and captive flight tests of the hard dock and recovery system.
“Early flight tests have given us confidence we can meet our objective to recover four gremlins in 30 minutes,” Scott Wierzbanowski, program manager in DARPA’s Tactical Technology Office, said in a written statement earlier this year.