Interactive virtual reality emerges as a new tool for drug design against COVID-19

6FC47CC5-B2E4-40DC-A256-544E0EA232CF

Interactive virtual reality emerges as a new tool for drug design against COVID-19

Bristol scientists have demonstrated a new virtual reality [VR] technique which should help in developing drugs against the SARS-CoV-2 virus—and enable researchers to share models and collaborate in new ways. The innovative tool, created by University of Bristol researchers, and published in the Journal of Chemical Information and Modeling, will help scientists around the world identify anti-viral drug leads more rapidly.

A SARS-CoV-2 enzyme known as the main protease (Mpro) is a promising target in the search for new anti-viral treatments. Molecules that stop the main protease from working—called enzyme inhibitors—stop the virus reproducing, and so could be effective drugs. Researchers across the world are working to find such molecules. A key predictor of a drug’s effectiveness is how tightly it binds to its target; knowing how a drug fits into the protein helps researchers design changes to its structure to make it bind more tightly.

Continue reading… “Interactive virtual reality emerges as a new tool for drug design against COVID-19”