Australian engineers prove quantum computer coding in silicon now possible

quantumcompu

Engineers in Australia have have proven, with the highest score ever achieved, that a quantum version of computer code can be written, and manipulated, using two quantum bits in a silicon microchip. The advance removes lingering doubts that such operations can be made reliably enough to allow powerful quantum computers to become a reality.

Continue reading… “Australian engineers prove quantum computer coding in silicon now possible”

Commercial nanotube transistors could be ready by 2020

nanotube

Each chip on this wafer has 10,000 nanotube transistors on it. 

For more than ten years, engineers have been worrying that they are running out of tricks for continuing to shrink silicon transistors. Intel’s latest chips have transistors with features as small as 14 nanometers, but it is unclear how the industry can keep scaling down silicon transistors much further or what might replace them.

 

 

Continue reading… “Commercial nanotube transistors could be ready by 2020”

Amprius raises $30 million to develop high-energy silicon batteries

The startup, Amprius is working on a new type of long-lasting lithium-ion batteries for laptops and electric vehicles. The company has started to sell its batteries for use in portable electronics. Amprius recently raised $30 million in venture capital to develop its next-generation batteries, which use high-energy silicon electrodes. The company says the batteries will store about 50 percent more energy than the battery cells in today’s electric vehicles.

 

 

Continue reading… “Amprius raises $30 million to develop high-energy silicon batteries”

Stanford engineers successfully build world’s first carbon nanotube computer

Researchers unveil the first working computer built entirely from carbon nanotube transistors.

A group of  researchers at Stanford University have moved a step closer to answering the question of what happens when silicon, the standard material in today’s microelectronic circuits, reaches its fundamental limits for use in increasingly small transistors.

 

 

Continue reading… “Stanford engineers successfully build world’s first carbon nanotube computer”

End of Moore’s Law by early 2020’s: It’s not just about physics

Moore’s Law — the ability to pack twice as many transistors on the same sliver of silicon every two years — will come to an end as soon as 2020 at the 7nm node says Robert Colwell who now works for DARPA (trying to pick after CMOS technology) and was Intel’s chief chip architect from 1990 to 2001.

 

Continue reading… “End of Moore’s Law by early 2020’s: It’s not just about physics”

Why computing will never be limited by Moore’s Law

 Silicon-based transistors must be powered all the time.

Experts predict that in less than 20 years we will reach the physical limit of how much processing capability can be squeezed out of silicon-based processors in the heart of our computing devices. But a recent scientific finding that could completely change the way we build computing devices may simply allow engineers to sidestep any obstacles.

 

 

Continue reading… “Why computing will never be limited by Moore’s Law”

New silicon battery technology could store 9x as much energy as lithium ion batteries

Grant Norton

Washington State University Professor Grant Norton

Most batteries today are lithium ion batteries, and employ carbon as the anode. Other materials perform much better than carbon, and could substantially increase battery capacity. Tin anodes could potentially triple energy density, and silicon anodes might be able to hold 9 times as much charge as carbon. Such advances could lead to tablet computers and laptops that run for days before battery depletion, and to miniature, battery powered UAVs able to remain aloft for up to an hour.

Continue reading… “New silicon battery technology could store 9x as much energy as lithium ion batteries”

Discover the Hidden Patterns of Tomorrow with Futurist Thomas Frey
Unlock Your Potential, Ignite Your Success.

By delving into the futuring techniques of Futurist Thomas Frey, you’ll embark on an enlightening journey.

Learn More about this exciting program.