Researchers create bioink that delivers oxygen to 3D printed tissue cells

F548E012-9AFC-4632-9D11-26BD8A61D733

Tissue engineering or regeneration is the process of improving upon or replacing biological tissues by combining cells and other materials with the optimal chemical and physiological conditions in order to build scaffolds upon which new viable tissue can form. We’ve seen many examples of 3D printing being used to accomplish this task. The potential to engineer new tissues this way provides an answer to organ transplant shortages and applications in drug discovery.

However, to become viable tissues, these cells need oxygen delivered to them via blood vessels, which, in transplanted tissue, can take several days to grow. But a collaborative group of researchers is working on a solution: an oxygen-releasing bioink that can deliver this all-important element to the cells in 3D bioprinted tissues. This allows the cells to survive while they’re waiting for blood vessels to finish growing.

Continue reading… “Researchers create bioink that delivers oxygen to 3D printed tissue cells”

0

How CRISPR is tackling the troubling immune response that’s plagued gene therapy until now

B2CD48F2-8E96-4A82-A2D2-35B9D7D5A896

One of the major challenges facing gene therapy — a way to treat disease by replacing a patient’s defective genes with healthy ones — is that it is difficult to safely deliver therapeutic genes to patients without the immune system destroying the gene, and the vehicle carrying it, which can trigger life-threatening widespread inflammation.

Three decades ago researchers thought that gene therapy would be the ultimate treatment for genetically inherited diseases like hemophilia, sickle cell anemia, and genetic diseases of metabolism. But the technology couldn’t dodge the immune response.

Since then, researchers have been looking for ways to perfect the technology and control immune responses to the gene or the vehicle. However, many of the strategies tested so far have not been completely successful in overcoming this hurdle.

Continue reading… “How CRISPR is tackling the troubling immune response that’s plagued gene therapy until now”

0

To repair a damaged heart, three cells are better than one

 44398B0B-0814-4806-B341-853F2D52D2BD

Cell therapy for cardiac regeneration, while promising, has been hampered by issues with long-term survival of the transplanted cells. Now, a technique that combines three different types of cells in a 3-D cluster could improve its efficacy in reducing scar tissue and improving cardiac function after a heart attack.

Called CardioCluster, the bioengineering technique was developed by Megan Monsanto, a recent doctoral candidate who worked with Mark Sussman, distinguished professor of biology at the San Diego State University Heart Institute. They found there is strength in numbers, even in cell therapy.

Their research shows the cell clusters improve heart function because they have much better retention rates compared to single cell injections—the clusters persisted inside the heart walls of mice models for as long as five months after transplantation, a significant advancement.

Continue reading… “To repair a damaged heart, three cells are better than one”

0

Elon Musk is one step closer to connecting a computer to your brain

9B3B1C29-ED7D-441B-A4E9-85BA2A83011A

Neuralink has demonstrated a prototype of its brain-machine interface that currently works in pigs.

At a Friday event, Elon Musk revealed more details about his mysterious neuroscience company Neuralink and its plans to connect computers to human brains. While the development of this futuristic-sounding tech is still in its early stages, the presentation was expected to demonstrate the second version of a small, robotic device that inserts tiny electrode threads through the skull and into the brain. Musk said ahead of the event he would “show neurons firing in real-time. The matrix in the matrix.”

And he did just that. At the event, Musk showed off several pigs that had prototypes of the neural links implanted in their head, and machinery that was tracking those pigs’ brain activity in real time. The billionaire also announced the Food and Drug Administration had awarded the company a breakthrough device authorization, which can help expedite research on a medical device.

Like building underground car tunnels and sending private rockets to Mars, this Musk-backed endeavor is incredibly ambitious, but Neuralink builds on years of research into brain-machine interfaces. A brain-machine interface is technology that allows for a device, like a computer, to interact and communicate with a brain. Neuralink, in particular, aims to build an incredibly powerful brain-machine interface, a device with the power to handle lots of data, that can be inserted in a relatively simple surgery. Its short-term goal is to build a device that can help people with specific health conditions.

Continue reading… “Elon Musk is one step closer to connecting a computer to your brain”

0

Robot skin 3D printer close to first-in-human clinical trials

43E94AD9-4DCE-4A1A-B109-58AEC704DD5E

In just two years a robotic device that prints a patient’s own skin cells directly onto a burn or wound could have its first-in-human clinical trials. The 3D bioprinting system for intraoperative skin regeneration developed by Australian biotech start-up Inventia Life Science has gained new momentum thanks to major investments from the Australian government and two powerful new partners, world-renowned burns expert Fiona Wood and leading bioprinting researcher Gordon Wallace.

Codenamed Ligō from the Latin “to bind”, the system is expected to revolutionize wound repairs by delivering multiple cell types and biomaterials rapidly and precisely, creating a new layer of skin where it has been damaged. The novel system is slated to replace current wound healing methods that simply attempt to repair the skin, and is being developed by Inventia Skin, a subsidiary of Inventia Life Science.

“When we started Inventia Life Science, our vision was to create a technology platform with the potential to bring enormous benefit to human health. We are pleased to see how fast that vision is progressing alongside our fantastic collaborators. This Federal Government support will definitely help us accelerate even faster,” said Dr. Julio Ribeiro, CEO, and co-founder of Inventia.

Continue reading… “Robot skin 3D printer close to first-in-human clinical trials”

0

Unraveling the initial molecular events of respiration

 EBFC07FB-9254-4010-93DA-46A1A7294DB2

Respiration is a fundamental process of all living things, allowing them to produce energy, stay healthy, and survive. In cells, respiration involves what are known as “respiratory proteins,” e.g. hemoglobin in the blood and myoglobin in muscles.

Respiratory proteins work by binding and releasing small molecules like oxygen, carbon monoxide etc., called ligands. They do this through their “active center,” which in many respiratory proteins is a chemical structure called heme porphyrin.

Continue reading… “Unraveling the initial molecular events of respiration”

0

Can aging really be ‘treated’ or ‘cured’?

D545CB4E-7B3C-4E30-B004-AF84A7D22400

As time passes, our fertility declines and our bodies start to fail. These natural changes are what we call ageing.

 In recent decades, we’ve come leaps and bounds in treating and preventing some of the world’s leading age-related diseases, such as coronary heart disease, dementia and Alzheimer’s disease.

But some research takes an entirely unique view on the role of science in easing the burden of ageing, focusing instead on trying to prevent it, or drastically slow it down. This may seem like an idea reserved mainly for cranks and science fiction writers, but it’s not.

Continue reading… “Can aging really be ‘treated’ or ‘cured’?”

0

Scientists inspired by Star Wars develop artificial skin capable of recreating sense of touch

 90658D05-68DD-49C7-B43D-7232662F7CA5

A researcher at the NUS demonstrates the self-healing abilities of an artificial, transparent skin

ACES, or Asynchronous Coded Electronic Skin, comprises up to 100 small sensors to replicate a sense of feeling.

  • Researchers say it can process information faster than the nervous system
  • The skin is able to recognise 20 to 30 different textures
  • The technology is still in the experimental stage

Singapore researchers have developed “electronic skin” capable of recreating a sense of touch, an innovation they hope will allow people with prosthetic limbs to detect objects, as well as feel texture, or even temperature and pain.

Continue reading… “Scientists inspired by Star Wars develop artificial skin capable of recreating sense of touch”

0

Bacteria that eats metal accidentally discovered by scientists

 C4706265-E50C-4A1F-8011-078F98382AE8

Manganese oxide nodules generated by the bacteria discovered by the Caltech team.

(CNN)Scientists have discovered a type of bacteria that eats and gets its calories from metal, after suspecting they exist for more than a hundred years but never proving it.

Now microbiologists from the California Institute of Technology (or Caltech) accidentally discovered the bacteria after performing unrelated experiments using a chalk-like type of manganese, a commonly found chemical element.

Continue reading… “Bacteria that eats metal accidentally discovered by scientists”

0

The Segway’s inventor has a new project : Manufacturing human organs

 D484372B-CC9F-4460-AE19-4A66A81BBA2A

Dean Kamen, who invented the Segway almost 20 years ago, is still busy inventing. Now, at the age of 69, he is working on the most ambitious project of his career: manufacturing organs

When the FDA approves lab-grown human organs for patients, Dean Kamen wants to be ready to mass-produce them

This past January, the umpteenth version of the Segway Personal Transporter whisked attendees around in its white, egg-shaped seat at CES, the huge annual consumer electronics show in Las Vegas. Called the Segway S-Pod, it drew comparisons to the hover-chairs in Wall-E that shuttled around people so out of shape and blob-like, they’d forgotten how to stand.

This is not how Dean Kamen, who invented the Segway almost 20 years ago, imagined his legacy.

Kamen was inspired to create a device like the Segway in the early ’90s, when he noticed a young man who’d lost his legs in a wheelchair at the mall. It seemed like everywhere Kamen went that night, he bumped into the guy, seeing him unable to get over a curb or reach a high shelf at Radio Shack, too low to be noticed in line at the ice cream counter. Kamen had already been thinking about how to help the disabled. “And I just decided, you know what?” he says. “I’m going to solve that problem.”

Continue reading… “The Segway’s inventor has a new project : Manufacturing human organs”

0

Coronavirus: Experts warn of bioterrorism after pandemic

423706BF-0C1E-45BC-B684-DA426EDCCB62

The Council of Europe has warned of a potential increase in the use of biological weapons, like viruses or bacterias, in a post-coronavirus world. Terrorists would not forget “lessons learned” during the pandemic.

Security experts from the Council of Europe have warned that the global coronavirus outbreak may increase the use of biological weapons by terrorists in the future.

“The COVID-19 pandemic has shown how vulnerable modern society is to viral infections and their potential for disuption,” the council’s Committee on Counter-Terrorism said in a statement.

The deliberate use of disease-causing agents — like viruses or bacterias — as an act of terrorism “could prove to be extremely effective.”

Continue reading… “Coronavirus: Experts warn of bioterrorism after pandemic”

0

Crumpled graphene makes ultra-sensitive cancer DNA detector

A63D0CB7-3B5B-4E2C-A45E-DF63E70FDE50

Graphene-based biosensors could usher in an era of liquid biopsy, detecting DNA cancer markers circulating in a patient’s blood or serum. But current designs need a lot of DNA. In a new study, crumpling graphene makes it more than ten thousand times more sensitive to DNA by creating electrical “hot spots,” researchers at the University of Illinois at Urbana-Champaign found.

Crumpled graphene could be used in a wide array of biosensing applications for rapid diagnosis, the researchers said. They published their results in the journal Nature Communications.

“This sensor can detect ultra-low concentrations of molecules that are markers of disease, which is important for early diagnosis,” said study leader Rashid Bashir, a professor of bioengineering and the dean of the Grainger College of Engineering at Illinois. “It’s very sensitive, it’s low-cost, it’s easy to use, and it’s using graphene in a new way.”

Continue reading… “Crumpled graphene makes ultra-sensitive cancer DNA detector”

0