Experts fear lab-grown brains will become sentient, which is upsetting

093D2336-EF1E-4785-B3E4-75EF3525983A

Well, we don’t want that … or do we?

The idea of sentient, lab-created “organoids” raises ethical questions that ripple through science.

Tests could include physical scans, mathematical models, and more.

Scientists say there are reasons it could be necessary to create consciousness … and destroy it.

A thought-provoking new article poses some hugely important scientific questions: Could brain cells initiated and grown in a lab become sentient? What would that look like, and how could scientists test for it? And would a sentient, lab-grown brain “organoid” have some kind of rights?

Continue reading… “Experts fear lab-grown brains will become sentient, which is upsetting”

Scientists create artificial, ‘living aneurysm’ outside the human brain in extraordinary first

47FB63CB-E371-497F-95F0-D15EFA3CB581

 For the first time, researchers have 3D printed a ‘living’ model of an aneurysm outside the body, using human brain cells. The breakthrough could one day assist brain surgeons in both training and high-risk decision-making.

An aneurysm occurs when a bulge or bubble develops at a weak point in a given blood vessel, which can take place in the heart or brain. The weakened wall can eventually rupture, with catastrophic and life-threatening consequences for the patient.

Given the highly sensitive and delicate areas in which aneurysms take place, they are often extremely difficult to both find and treat.

As a potential solution, researchers at the Lawrence Livermore National Laboratory (LLNL), including scientists from Duke University and Texas A&M, have created an external, artificial replica which mimics the particular environment in which aneurysms occur.

Continue reading… “Scientists create artificial, ‘living aneurysm’ outside the human brain in extraordinary first”

Artificial ‘mini-lungs’ grown in a lab allow scientists to watch how the coronavirus infects human cells in ‘major breakthrough’

CBB1395D-A07E-450D-8F6A-16BE6F28E086

Tiny artificial lungs grown in a lab from adult stem cells have allowed scientists to watch how coronavirus infects the lungs in a new ‘major breakthrough’.

Researchers from Duke University and Cambridge University produced artificial lungs in two independent and separate studies to examine the spread of Covid-19.

  • Researchers took stem cells and had them grow into cells found in the lungs
  • They then had them produce 3D models of the lung cells Covid-19 infects
  • They can use their new models to track the spread of the deadly virus in lungs
  • It’s hoped doing so will allow them to develop new drugs to help treat the virus

Continue reading… “Artificial ‘mini-lungs’ grown in a lab allow scientists to watch how the coronavirus infects human cells in ‘major breakthrough’”

Scientists claim to invent hydrogel that heals nerve damage

B1D39E93-FF59-4E3B-B8BE-F9803A382F3A

THEY SAY THE GEL CAN PROPAGATE NEURAL SIGNALS WHERE NERVES ARE INJURED.

A team of doctors and engineers have developed a new hydrogel that they say might be able to repair nerve damage more quickly and reliably than any other methods.

The hydrogel is essentially a porous and water-saturated material that can stretch, bend, and — most importantly — propagate neural signals. In animal trials, the team of Nanjing University researchers found that the hydrogel restored lost bodily function and helped the animals heal faster, according to research published Wednesday in the journal ACS NANO. Now, they’re hoping the gel will work in human medicine as well.

Continue reading… “Scientists claim to invent hydrogel that heals nerve damage”

Biochip innovation combines AI and nanoparticles to analyze tumors

C51E21CB-60ED-4F33-9C90-ED2D38264F65

Electrical engineers, computer scientists and biomedical engineers at the University of California, Irvine have created a new lab-on-a-chip that can help study tumor heterogeneity to reduce resistance to cancer therapies.

In a paper published today in Advanced Biosystems, the researchers describe how they combined artificial intelligence, microfluidics and nanoparticle inkjet printing in a device that enables the examination and differentiation of cancers and healthy tissues at the single-cell level.

“Cancer cell and tumor heterogeneity can lead to increased therapeutic resistance and inconsistent outcomes for different patients,” said lead author Kushal Joshi, a former UCI graduate student in biomedical engineering. The team’s novel biochip addresses this problem by allowing precise characterization of a variety of cancer cells from a sample.

Continue reading… “Biochip innovation combines AI and nanoparticles to analyze tumors”

New super-enzyme eats plastic bottles six times faster

117F340C-2505-41E5-AB56-E5A2B9401797

Breakthrough that builds on plastic-eating bugs first discovered by Japan in 2016 promises to enable full recycling

A super-enzyme that degrades plastic bottles six times faster than before has been created by scientists and could be used for recycling within a year or two.

The super-enzyme, derived from bacteria that naturally evolved the ability to eat plastic, enables the full recycling of the bottles. Scientists believe combining it with enzymes that break down cotton could also allow mixed-fabric clothing to be recycled. Today, millions of tonnes of such clothing is either dumped in landfill or incinerated.

Plastic pollution has contaminated the whole planet, from the Arctic to the deepest oceans, and people are now known to consume and breathe microplastic particles. It is currently very difficult to break down plastic bottles into their chemical constituents in order to make new ones from old, meaning more new plastic is being created from oil each year.

Continue reading… “New super-enzyme eats plastic bottles six times faster”

Machine learning takes on synthetic biology: algorithms can bioengineer cells for you

1E71BCED-80C3-4894-9B47-39C7764F77CC

Berkeley Lab scientists Tijana Radivojevic (left) and Hector Garcia Martin working on mechanistic and statistical modeling, data visualizations, and metabolic maps at the Agile BioFoundry last year.

 Machine learning takes on synthetic biology: algorithms can bioengineer cells for you.

If you’ve eaten vegan burgers that taste like meat or used synthetic collagen in your beauty routine—both products that are “grown” in the lab—then you’ve benefited from synthetic biology. It’s a field rife with potential, as it allows scientists to design biological systems to specification, such as engineering a microbe to produce a cancer-fighting agent. Yet conventional methods of bioengineering are slow and laborious, with trial and error being the main approach.

Now scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new tool that adapts machine learning algorithms to the needs of synthetic biology to guide development systematically. The innovation means scientists will not have to spend years developing a meticulous understanding of each part of a cell and what it does in order to manipulate it; instead, with a limited set of training data, the algorithms are able to predict how changes in a cell’s DNA or biochemistry will affect its behavior, then make recommendations for the next engineering cycle along with probabilistic predictions for attaining the desired goal.

Continue reading… “Machine learning takes on synthetic biology: algorithms can bioengineer cells for you”

Researchers create bioink that delivers oxygen to 3D printed tissue cells

F548E012-9AFC-4632-9D11-26BD8A61D733

Tissue engineering or regeneration is the process of improving upon or replacing biological tissues by combining cells and other materials with the optimal chemical and physiological conditions in order to build scaffolds upon which new viable tissue can form. We’ve seen many examples of 3D printing being used to accomplish this task. The potential to engineer new tissues this way provides an answer to organ transplant shortages and applications in drug discovery.

However, to become viable tissues, these cells need oxygen delivered to them via blood vessels, which, in transplanted tissue, can take several days to grow. But a collaborative group of researchers is working on a solution: an oxygen-releasing bioink that can deliver this all-important element to the cells in 3D bioprinted tissues. This allows the cells to survive while they’re waiting for blood vessels to finish growing.

Continue reading… “Researchers create bioink that delivers oxygen to 3D printed tissue cells”

How CRISPR is tackling the troubling immune response that’s plagued gene therapy until now

B2CD48F2-8E96-4A82-A2D2-35B9D7D5A896

One of the major challenges facing gene therapy — a way to treat disease by replacing a patient’s defective genes with healthy ones — is that it is difficult to safely deliver therapeutic genes to patients without the immune system destroying the gene, and the vehicle carrying it, which can trigger life-threatening widespread inflammation.

Three decades ago researchers thought that gene therapy would be the ultimate treatment for genetically inherited diseases like hemophilia, sickle cell anemia, and genetic diseases of metabolism. But the technology couldn’t dodge the immune response.

Since then, researchers have been looking for ways to perfect the technology and control immune responses to the gene or the vehicle. However, many of the strategies tested so far have not been completely successful in overcoming this hurdle.

Continue reading… “How CRISPR is tackling the troubling immune response that’s plagued gene therapy until now”

To repair a damaged heart, three cells are better than one

 44398B0B-0814-4806-B341-853F2D52D2BD

Cell therapy for cardiac regeneration, while promising, has been hampered by issues with long-term survival of the transplanted cells. Now, a technique that combines three different types of cells in a 3-D cluster could improve its efficacy in reducing scar tissue and improving cardiac function after a heart attack.

Called CardioCluster, the bioengineering technique was developed by Megan Monsanto, a recent doctoral candidate who worked with Mark Sussman, distinguished professor of biology at the San Diego State University Heart Institute. They found there is strength in numbers, even in cell therapy.

Their research shows the cell clusters improve heart function because they have much better retention rates compared to single cell injections—the clusters persisted inside the heart walls of mice models for as long as five months after transplantation, a significant advancement.

Continue reading… “To repair a damaged heart, three cells are better than one”

Elon Musk is one step closer to connecting a computer to your brain

9B3B1C29-ED7D-441B-A4E9-85BA2A83011A

Neuralink has demonstrated a prototype of its brain-machine interface that currently works in pigs.

At a Friday event, Elon Musk revealed more details about his mysterious neuroscience company Neuralink and its plans to connect computers to human brains. While the development of this futuristic-sounding tech is still in its early stages, the presentation was expected to demonstrate the second version of a small, robotic device that inserts tiny electrode threads through the skull and into the brain. Musk said ahead of the event he would “show neurons firing in real-time. The matrix in the matrix.”

And he did just that. At the event, Musk showed off several pigs that had prototypes of the neural links implanted in their head, and machinery that was tracking those pigs’ brain activity in real time. The billionaire also announced the Food and Drug Administration had awarded the company a breakthrough device authorization, which can help expedite research on a medical device.

Like building underground car tunnels and sending private rockets to Mars, this Musk-backed endeavor is incredibly ambitious, but Neuralink builds on years of research into brain-machine interfaces. A brain-machine interface is technology that allows for a device, like a computer, to interact and communicate with a brain. Neuralink, in particular, aims to build an incredibly powerful brain-machine interface, a device with the power to handle lots of data, that can be inserted in a relatively simple surgery. Its short-term goal is to build a device that can help people with specific health conditions.

Continue reading… “Elon Musk is one step closer to connecting a computer to your brain”

Robot skin 3D printer close to first-in-human clinical trials

43E94AD9-4DCE-4A1A-B109-58AEC704DD5E

In just two years a robotic device that prints a patient’s own skin cells directly onto a burn or wound could have its first-in-human clinical trials. The 3D bioprinting system for intraoperative skin regeneration developed by Australian biotech start-up Inventia Life Science has gained new momentum thanks to major investments from the Australian government and two powerful new partners, world-renowned burns expert Fiona Wood and leading bioprinting researcher Gordon Wallace.

Codenamed Ligō from the Latin “to bind”, the system is expected to revolutionize wound repairs by delivering multiple cell types and biomaterials rapidly and precisely, creating a new layer of skin where it has been damaged. The novel system is slated to replace current wound healing methods that simply attempt to repair the skin, and is being developed by Inventia Skin, a subsidiary of Inventia Life Science.

“When we started Inventia Life Science, our vision was to create a technology platform with the potential to bring enormous benefit to human health. We are pleased to see how fast that vision is progressing alongside our fantastic collaborators. This Federal Government support will definitely help us accelerate even faster,” said Dr. Julio Ribeiro, CEO, and co-founder of Inventia.

Continue reading… “Robot skin 3D printer close to first-in-human clinical trials”

Discover the Hidden Patterns of Tomorrow with Futurist Thomas Frey
Unlock Your Potential, Ignite Your Success.

By delving into the futuring techniques of Futurist Thomas Frey, you’ll embark on an enlightening journey.

Learn More about this exciting program.