Using gene editing to fight deadly genetic diseases

Experts share the latest advances at annual PQG conference 

By – Karen Feldscher

November 30, 2022 – Cutting-edge gene editing techniques hold enormous promise for tackling devastating diseases such as sickle cell disease, Huntington’s disease, and heart disease, according to experts.

At the 16th annual Program in Quantitative Genomics (PQG) conference, a two-day event held in early November and hosted by Harvard T.H. Chan School of Public Health, a dozen speakers spoke about recent and upcoming research on therapeutics and technologies targeting specific genetic mutations that cause disease. About 180 participants from around the world attended the virtual conference.

Continue reading… “Using gene editing to fight deadly genetic diseases”

Gene-edited super tomato may provide the vitamin punch to fight Alzheimer’s, Parkinson’s, and cancer

NORWICH, United Kingdom — A genetically engineered “super” tomato that may have the power to fight Alzheimer’s, Parkinson’s, and cancer has been created by British scientists. The modified fruit is packed with vitamin D — which also boosts bones, teeth, and muscles.

Estimates show more than four in 10 Americans may have a vitamin D deficiency, which can increase their risk of developing a host of illnesses. Now, a team at the John Innes Centre in Norwich has engineered a variety of tomato that produces more.

They used a gene editing technique known as CRISPR, enabling them to make precise changes in DNA at specific locations. The procedure blocked the action of an enzyme that normally converts the vitamin to cholesterol.

“We’ve shown that you can biofortify tomatoes with provitamin D3 using gene editing, which means tomatoes could be developed as a plant-based, sustainable source of vitamin D3,” says corresponding author Professor Cathie Martin in a media release.

“Forty percent of Europeans have vitamin D insufficiency and so do one billion people world-wide. We are not only addressing a huge health problem, but are helping producers, because tomato leaves which currently go to waste, could be used to make supplements from the gene-edited lines.”

Continue reading… “Gene-edited super tomato may provide the vitamin punch to fight Alzheimer’s, Parkinson’s, and cancer”

How CRISPR is tackling the troubling immune response that’s plagued gene therapy until now


One of the major challenges facing gene therapy — a way to treat disease by replacing a patient’s defective genes with healthy ones — is that it is difficult to safely deliver therapeutic genes to patients without the immune system destroying the gene, and the vehicle carrying it, which can trigger life-threatening widespread inflammation.

Three decades ago researchers thought that gene therapy would be the ultimate treatment for genetically inherited diseases like hemophilia, sickle cell anemia, and genetic diseases of metabolism. But the technology couldn’t dodge the immune response.

Since then, researchers have been looking for ways to perfect the technology and control immune responses to the gene or the vehicle. However, many of the strategies tested so far have not been completely successful in overcoming this hurdle.

Continue reading… “How CRISPR is tackling the troubling immune response that’s plagued gene therapy until now”


Body fat transformed by CRISPR gene editing helps mice keep weight off


A 3D illustration of brown fat cells, which both burn and store energy

 White fat cells can be turned into energy-burning brown fat using CRISPR gene-editing technology. These engineered cells have helped mice avoid weight gain and diabetes when on a high-fat diet, and could eventually be used to treat obesity-related disorders, say the researchers behind the work.

Human adults have plenty of white fat, the cells filled with lipid that make up fatty deposits. But we have much smaller reserves of brown fat cells, which burn energy as well as storing it. People typically lose brown fat as they age or put on weight. While brown fat seems to be stimulated when we are exposed to cold temperatures, there are no established methods of building up brown fat in the body.

Yu-Hua Tseng at Harvard University and her colleagues have developed a workaround. The researchers have used the CRISPR gene-editing tool to give human white fat cells the properties of brown fat.

Continue reading… “Body fat transformed by CRISPR gene editing helps mice keep weight off”


Reprogrammed skin cells inserted in brain help Parkinson’s patient regain function – study


REUTERS – Skin cells reprogrammed to produce the neurotransmitter dopamine and inserted deep into the brain of a 69-year-old man with Parkinson’s disease have allowed him to tie his shoes again and resume swimming and biking, researchers reported in The New England Journal of Medicine on Wednesday.

The experimental treatment, initiated two years ago and financed partly by the patient, used the man’s own skin cells to create dopamine-releasing nerve cells. Using his own cells dramatically lowers the risk of rejection by the immune system.

Parkinson’s, a progressive disease that affects millions of people worldwide, produces tremors, stiffness, and problems walking and speaking as the dopamine-producing cells in the brain degenerate.

Researchers say the transformed skin cells, transplanted into both hemispheres of the brain in surgical procedures six months apart, continued to produce the dopamine needed to ease the Parkinson’s symptoms.

Continue reading… “Reprogrammed skin cells inserted in brain help Parkinson’s patient regain function – study”


How caloric restriction prevents negative effects of aging in cells



A new study provides the most detailed report to date of the cellular effects of a calorie-restricted diet in rats. While the benefits of caloric restriction have long been known, the new results show how this restriction can protect against aging in cellular pathways.

If you want to reduce levels of inflammation throughout your body, delay the onset of age-related diseases, and live longer, eat less food. That’s the conclusion of a new study by scientists from the US and China that provides the most detailed report to date of the cellular effects of a calorie-restricted diet in rats. While the benefits of caloric restriction have long been known, the new results show how this restriction can protect against aging in cellular pathways, as detailed in Cell on February 27, 2020.

“We already knew that calorie restriction increases life span, but now we’ve shown all the changes that occur at a single-cell level to cause that,” says Juan Carlos Izpisua Belmonte, a senior author of the new paper, professor in Salk’s Gene Expression Laboratory and holder of the Roger Guillemin Chair. “This gives us targets that we may eventually be able to act on with drugs to treat aging in humans.”

Continue reading… “How caloric restriction prevents negative effects of aging in cells”


A new CRISPR technique could fix almost all genetic diseases possible


A new method, called “prime editing,” could, in principle, correct around
89 percent of the mutations that cause inherited human disease.

A less error-prone DNA editing method could correct many more harmful mutations than was previously possible.

Andrew Anzalone was restless. It was late fall of 2017. The year was winding down, and so was his MD/PhD program at Columbia. Trying to figure out what was next in his life, he’d taken to long walks in the leaf-strewn West Village. One night as he paced up Hudson Street, his stomach filled with La Colombe coffee and his mind with Crispr gene editing papers, an idea began to bubble through the caffeine brume inside his brain.

Continue reading… “A new CRISPR technique could fix almost all genetic diseases possible”


Japan approves scientist’s plan to create world’s first Humanimals


For the first time, a government is supporting a plan to create animal embryos with human cells and bring them to term, resulting in a type of humanimal known as a human-animal chimera.

According to Nature, a committee from Japan’s science ministry signed off on a request by researchers to grow human pancreases in either rats or mice, the first such experiment to gain approval since a government ban was reversed earlier this year.

“Finally, we are in a position to start serious studies in this field after 10 years of preparation,” lead researcher Hiromitsu Nakauchi told the Japanese newspaper Asahi Shimbun.

Continue reading… “Japan approves scientist’s plan to create world’s first Humanimals”


Hacking Humans : Search & replace gene editing is here


The introduction of CRISPR changed the world of genetic engineering by allowing researchers to “cut and paste” DNA. But the process can introduce errors that produce unpredictable results. A recently published report in the journal Nature by David Liu, a Harvard university biologist, describes a new process that is more like a “search and replace” function than a “cut and paste” function because the DNA strand is not severed during the process.

The scientists claim that “prime editing” is “capable of repairing nearly any of the 75,000 known mutations that cause inherited disease in humans.” Liu told journalists in a conference call arranged by Nature. “If CRISPR is like scissors, base editors are like a pencil. Then you can think of prime editors like a word processor, capable of precise search and replace … All will have roles.”

Genetic editing is progressing on an exponential curve. So we are exponentially closer to designer organisms of all kinds. Humans, the food supply (animals and plants), pesticides, weapons (specifically bioterrorism) and any other good or evil stuff you can think of.

The funny thing about exponential progress is that we don’t really feel it in our day-to-day lives. Think of the speed with which hollywood-style multi-million dollar computer generated movie-making tools became apps (FaceApp, Zao, etc). Now apply that speed to genetic engineering. That’s what’s coming soon to a lab near you. Stay tuned.




Humans hava a ‘Salamander-like’ ability to regenerate damaged body parts, study finds


Axolotls (pictured) have a remarkable ability to regenerate lost body parts.

Salamanders are renowned for their regenerative capabilities, such as growing back entire limbs. We can’t pull off this biological trick, but new research highlights a previously unknown regenerative ability in humans—one held over from our evolutionary past.

Our bodies have retained the capacity to repair injured or overworked cartilage in our joints, says new research published today in Science Advances. Remarkably, the mechanics of this healing process are practically the same as what’s used by amphibians and other animals to regenerate lost limbs, according to the study.

“We call it our ‘inner salamander’ capacity.”

The scientists who identified this previously unknown human capacity are hopeful their findings could lead to powerful new therapies to treat common joint disorders and injuries, including osteoarthritis. More radically, this healing mechanism “might be exploited to enhance joint repair and establish a basis for human limb regeneration,” the authors wrote in the paper.

Continue reading… “Humans hava a ‘Salamander-like’ ability to regenerate damaged body parts, study finds”


People with this eye color make the most money


The human eye boasts a riveting evolutionary journey. Ninety-five percent of all living organisms possess the ability of sight, though not a single pair perceives the world the same. For the developed beasts, vision funds everything from poetry to judicious engagement. At one time, brown eyes were the human default, but a chain of mutations has authored varying shades of blue, green and even gray. You’ve likely read poesy dedicated to the each, but what real-world associations does eye color submit?

Thankfully, the authors over at 1-800 contact have done the leg work for us, surveying 1,000 people in regards to the practical perception of “peepers”.

Continue reading… “People with this eye color make the most money”


Gene-hacking mosquitoes to be infertile backfired spectacularly




Best-Laid Plans

On its surface, the plan was simple: gene-hack mosquitoes so their offspring immediately die, mix them with disease-spreading bugs in the wild, and watch the population drop off. Unfortunately, that didn’t quite pan out.

The genetically-altered mosquitoes did mix with the wild population, and for a brief period the number of mosquitoes in Jacobino, Brazil did plummet, according to research published in Nature Scientific Reports last week. But 18 months later the population bounced right back up, New Atlas reports — and even worse, the new genetic hybrids may be even more resilient to future attempts to quell their numbers.

Continue reading… “Gene-hacking mosquitoes to be infertile backfired spectacularly”